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Semiclassical Approximations to Quantum Dynamical Time 

Correlation Functions 

Jianshu Cao and Gregory A. Voth 

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 

Abstract 

Semiclassical approximations for quantum time correlation functions are 

presented for both electronically adiabatic and nonadiabatic dynamics along 

with discussions of the operator ordering and the classical limit. With the 

combined use of the initial-value representation of the semiclassical propaga- 

tor, a discrete algorithm to evaluate the Jacobi matrices, semiclassical op- 

erator ordering rules, and the stationary-phase filter technique, a practical 

algorithm is developed to calculate quantum time correlation functions. This 

approach holds considerable promise for simulating the quantum dynamics of 

realistic many-body systems. Some simple illustrative examples are used to 

demonstrate the feasibility and accuracy of the algorithm. 
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I. INTRODUCTION 

It is well-known from linear response theory that the response of a system to a weak 

external force can be formulated in terms of a time correlation function for the relevant 

dynamical variable of the system (see, e.g., Refs. 1-3). Therefore, time correlation functions 

play a central role in the study of dynamical processes, such as chemical reactions, light 

scattering spectra, spectroscopic lineshapes, transport properties, etc. Classically, the evo- 

lution of the system obeys the Newtonian equation of motion, which serves as the basis for 

molecular dynamics (MD) simulations. Quantum mechanically, the probabilistic wavefunc- 

tion propagates according to the Schrödinger equation, which in principle cannot be solved 

by means of deterministic trajectory dynamics. Due to the importance of time correlation 

functions, much effort has been devoted to the development of methods to calculate them 

quantum mechanically; unfortunately, few methods have been successful in applications to 

realistic many-body quantum systems. In fact, it turns out that real-time quantum propaga- 

tion is a truly formidable numerical problem because large sign fluctuations in the real-time 

propagator overwhelm the contribution from the physical quantities of interest (see, e.g., 

Refs. 4-10). Thus, to this day the real-time propagation of many-body quantum systems 

remains a daunting challenge. 

There have been several attempts to calculate quantum time correlation functions ex- 

actly using the Feynman path integral formulation.4,6'11 For example, by virtue of the nu- 

merical matrix multiplication method (NMM),12 Thirumalai and Berne were able to cal- 

culate the symmetrized dipole-dipole time correlation function for a proton moving in a 

one-dimensional bistable potential.13 While the NMM approach becomes prohibitive for 

many-dimensional systems, it is also fruitless to directly apply Monte Carlo methods to 

evaluate time correlation functions in such systems due to large phase cancellations. To 

treat the generic problem of performing many-dimensional averages of highly oscillatory 

integrands-which are the origin of the difficulty in direct Monte Carlo calculations of such 

functions-several stationary phase Monte Carlo (SPMC) methods have been developed. 
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The implementation of these and other techniques makes it possible in some cases to sim- 

ulate the dynamics of simplified many-dimensional quantum systems. For example, there 

have been a series of studies on electron transfer dynamics as represented by the spin-boson 

model and its multi-state generalization. 20~23 For system-bath-type Hamiltonians having 

harmonic baths, quasi-adiabatic propagator path integral methods (QUAPI) have also been 

developed which propagate adiabatically a one-dimensional system in which the harmonic 

bath has been incorporated through an analytic influence functional.24"28 By virtue of this 

algorithm and discrete variable representation (DVR) quadrature, a detailed study of quan- 

tum rates for a double well coupled to a harmonic bath was recently presented26 along 

with a comparison to approximate theories. Unfortunately, all of the methods described 

above are either not directly applicable to "real" nonlinear many-body potentials or become 

numerically intractable for anything but the short time dynamics of such systems.29 

One "exact" alternative to the direct real time quantum dynamics approach is based on 

the fact that real-time correlation functions can be formally related to their imaginary-time 

counterparts through analytic continuation {l/kBT = ß -»• it/h)30'31 Thus, in principle, 

one can simulate a quantum system with an equilibrium path integral Monte Carlo method 

at several values of imaginary time and infer the real-time quantities through the analytic 

continuation (see, e.g., Refs. 31-34). In practice, however, the analytic continuation is 

rather sensitive to statistical fluctuations in imaginary time data so this approach has suf- 

fered from numerical instabilities. Gubernatis and coworkers have recently introduced the 

maximum entropy method (MEM) which appears to improve the stability of the analytic 

continuation.7'35'36 The MEM has proven to be reliable and efficient in similar ill-posed in- 

version problems, so its application in path integral simulations seems novel and promising. 

Using this technique, Gallicchio and Berne37 have, for example, calculated the dipole absorp- 

tion spectrum of an electron in fluid helium and found good agreement with some previous 

analytic results. The implementation of this and other versions of the MEM allows one to 

evaluate the lower frequency portion of the absorption spectra with good accuracy, but it 

probably requires further effort to determine the high-frequency portion which is essential in 



describing short-to-intermediate time quantum dynamics, e.g., photodissociation processes, 

optical control experiments, quantum tunneling, and charge transfer. 

As an alternative to the numerical evaluation of the exact quantum time propagation in 

many-body systems, one can develop approximate methods for quantum dynamics on which 

stable and feasible numerical algorithms can be based to compute time correlation func- 

tions.  One such approach38-41 has been developed by the present authors and is based on 

the dynamical properties of the centroid variable in Feynman path integration.4'11 In this ap- 

proach, called «Centroid Molecular Dynamics" (CMD), a quasiclassical dynamics algorithm 

is employed to compute an approximation to the the Kubo-transformed quantum dynamical 

time correlation function.  There are now several encouraging results from applications of 

CMD to a variety of non-trivial systems.41'45 The simplicity and stability of this method 

makes CMD a promising candidate for quantum dynamical simulations in the condensed 

phase where other methods become impractical. 

In the present paper, however, a different and promising approach for the calculation 

of approximate quantum dynamical time correlation functions will be developed based on 

semiclassical arguments, some of which originate from the earliest formulations of the "old" 

quantum theory Indeed, since those early days many attempts have been made to elucidate 

and utilize the relationship between classical dynamics and its quantum counterpart. In 

time-independent quantum mechanics, this is commonly known as the WKB (Wentzel- 

Kramers-Brillouin) approximation for one-dimensional problems, and it can be generalized 

to many-dimensional problems as in classical S-matrix theory46'48 (Miller-Marcus theory) 

and EBK (Einstein-Brillouin-Keller) quantization theory (see, e.g., Refs. 3, 49). On the 

other hand, time-dependent semiclassical mechanics was first studied by Van Vleck50 and 

later extended by many others.46'48,51-55 

Although semiclassical approaches have found wide use in various analytical theories, the 

development of semiclassical quantum dynamics as a numerical algorithm has been hindered 

by two major drawbacks: the root search problem and the caustics problem. These two dif- 

ficulties can be avoided in some cases, e.g., in the context of Miller's S-matnx theory 
46,48 



with the help of an initial-value representation in which an integration in phase space by- 

passes the root search. Moreover, Campolieti and Brumer have extended the initial-value 

analysis to real-time propagation and have thus suggested a semiclassical approach in which 

the classical trajectories evolve according to the initial phase space representation.56 Earlier, 

Miller and Heller proposed an initial-value propagation of wavefunctions which introduces 

integrations over initial and final positions and thus allows for a change of variables to the 

initial phase variables.57-59 

In the present paper, we show how the initial-value semiclassical approach for comput- 

ing the quantum propagator can be used to calculate time correlation functions. To be 

more specific, we have re-derived the initial-value semiclassical propagator from a discrete 

perspective and found an alternative for evaluating the Jacobi matrices in the discretized 

formalism. Importantly, these new developments allow us to formulate the theory and a 

tractable numerical algorithm for both adiabatic and nonadiabatic semiclassical time prop- 

agation of the nuclei in quantum systems. This, along with an initial-value expression for 

the evaluation of quantum operators, makes it possible to implement semiclassical dynamics 

in the calculation of quantum dynamical time correlation functions. The emphasis in the 

present paper is on a formulation amenable to realistic many-body simulations. 

The sections of this paper are organized as follows: In Sec. II, the semiclassical approx- 

imation for quantum time correlation functions is described and rederived in the adiabatic 

dynamics limit from both the boundary-value and initial-value perspectives, the latter being 

shown to be superior for our purposes. This derivation is next generalized in Sec. Ill to the 

nonadiabatic limit. Then, in Sec. IV a stationary-phase filter method is introduced to aid in 

the actual implementation of the initial-value semiclassical methodology and some numerical 

examples are studied in Sec. V to demonstrate the feasibility of the algorithm. Concluding 

remarks are given in Sec. VI, while the Appendices contain important supporting material. 



II. SEMICLASSICAL THEORY: ADIABATIC DYNAMICS 

A. Boundary-value Formulation 

1. Van Vleck Formula for the Propagator 

It is well-known that semiclassical mechanics can be largely understood as an asymp- 

totic analysis of functional integrals in terms of 7T1, which to second order is equivalent 

to the stationary phase approximation.48 In this subsection, the boundary-value Van Vleck 

formulation of time-dependent semiclassical theory will be reviewed for completeness and as 

background material for subsequent developments. To start, the real-time propagator can 

be expressed according to Feynman's prescription of path integrals as4'11 

G(qi,q*;t) = (qtle-^M = /Pq(f)exp{*S[q(f)]/ft}     , (2-1) 

where the action S[q(f)], given by 

5[q(t')] = iyt'L[q(t'),q(t')] = [dt1 |iq(f) ■ m • q(f) - V[q(t')}]      , (2.2) 

evaluated with the Lagrangian L[q{t>), q(i')] along the path q(t) subject to the boundary is 

conditions 

q(0) = qi 

q(t) = qt    • (2-3) 

Following common notation, fonts with hats denote operators and bold fonts denote vectors 

or matrices; in particular, the vectors q = {qi, g2, • ■ ■, QN} and p = {pi,p2, • ■ ■ ,PN} represent, 

respectively, iV-dimensional coordinates and their conjugate momenta in an iV-degree-of- 

freedom system, whereas m is the diagonal mass matrix. An application of the stationary- 

phase approximation to Eq. (2.1) gives6 

,  ^f i yv/2  , j  92Sst 
Gsciquq^^E^)       \dGt{'8q-^q det ( _ _^Ü§L ] expiiSJh)    , (2.4) 



where the summation is carried over all possible stationary paths, and Sst = Sst(qi, qt] t) is 

the classical action associated with a given stationary path. The stationary phase condition 

[5S/6q(t%t = 0 determines the classical trajectory, thus leading to the Euler-Lagrange 

equations 

dt' \dq)      dq M      dq 

with the boundary conditions in Eq. (2.3). 

In the short time limit, the determinant in Eq. (2.4) is positive and this semiclassical 

expression is exactly the original Van Vleck short-time propagator.50 In general, the deter- 

minant, termed the Van Vleck determinant, can be written in a more useful form as 

det (    P>«J\ = IdetJ^r^expHTrKi)/^    , (2-6) 
\ \    dqxdqt) 

where u{t), known as the Maslov index,51 is the number of sign changes of the determinant as 

the trajectory evolves in time from 0 to t. The Jacobi matrices, defined as Jq(f) = öq(f)/9pi 

and Jp(t') = dp{t')/dpi, are the solutions of the coupled Jacobi equations,6,60 given by 

jq(t') = m"1 ■ 3p(t') 

jp(t>) = -K(f )J,(f) (2-7) 

with the initial conditions 

J,(0) = 0 

JP(0) = I    , (2-8) 

where I is the iV-dimensional identity matrix and K(t;) is the time-dependent force constant 

matrix, K(t;) = d2V{t')/dqdq, evaluated along the stationary path V{t') = V[qst{t')}. 

Clearly, the Jacobi equation in Eq. (2.7) is the same as the equation of motion describing 

an oscillator with a time-dependent force constant determined by the stationary trajectory. 

The nonuniform semiclassical formula in Eq. (2.4) is valid as long as the prefactor in Eq. 

(2.6) remains finite. It happens at certain times that two or more paths may coalesce at a 

focal point, or caustic, where 

7 



detJ,(tc) = detöq(tc)/öpi = 0    , (2-9) 

resulting in the divergence of the nonuniform expression Eq. (2.4). In that case, one can 

resort to more accurate uniform asymptotic approximations61 which, of course, assume a 

more complicated form. Also, at a caustic tc, the number of negative eigenvalues of the 

matrix J,(tc), denoted by Sign[J,(*c)], will change depending on the order of the caustic. 

By keeping track of the time evolution of Sign[J,(t)], one can express the Maslov index 

explicitly as 

m = £ {Sign[J,(tf)] - Sign[Jfl(tfc )]} (2-10) 
k 

where tk denotes the jfc-th caustic time as the stationary path evolves in time from 0 to 

t. In fact, it can be seen from Eq. (2.6) that the Maslov index is simply the number of 

negative eigenvalues of the second-order derivative matrix, which will be discussed later in 

the context of the initial-value representation. 

Apart from the difficulties associated with caustics, the root search problem poses a 

formidable task in numerical implementation of Eq. (2.4). Unlike an initial-value problem 

where the trajectory follows a unique path in phase space, the boundary-value problem 

requires one to search for a solution to Eq. (2.5) which satisfies both the initial and final 

conditions in Eq. (2.3), thus giving rise to the possibility of multiple solutions. For many- 

body potentials there can exist a very large number of such paths for longer time dynamics. 

One also might obtain imaginary paths in the case of quantum tunneling. The numeri- 

cal difficulty associated with the search for these solutions increases drastically with the 

dimensionality of the system. 

2. Time Correlation Functions 

As stated earlier, many physical quantities of interest can be related to time correlation 

functions. In their most general form, these functions can be expressed as 



(Ä(t)B(0)) = Z-1Tv[e-ßAei6t/hÄe-iAt/hB) 

= Z'1 I dqi I dq2 I dqt J dq[ J dq't 

X p(q1)q2;/?)(qi|e-^|q2)*(q;|e-^/?l|q'1)(qt|i|q;)(q/il^lqi)   . (2-H) 

where Z is the partition function, Z = Tvexp(-ßH), and p is the canonical density matrix 

at temperature ß = l/kBT, i.e., pfawß) = (qi^M- While Eq. (2.11) is a general 

expression, for the present discussion we will specialize it to the case in which the operators 

A and B are dependent on position only, giving 

(A(t) B(0)) = 

Z-1 I dqi / dq2 j dqt p(qx, q2; ß) {^\e~^W {^e^^M A(q*)5(qi) ■     (^) 

The case of general operators depending on both position and momenta will be discussed in 

the next subsection within the context of the initial-value formulation. By substituting the 

semiclassical formula in Eq. (2.4) for the propagators into the above expression, one obtains 

(A(t)B{0))sc = Z~l j dqi j dq2J dqt A(q.t)B{qi) p(q2, qi! ß) 
/ o    \ -1/2 

x "4 E fdet|^det|^ )        exp(zA5st/a) , (2.13) 

where the subscript ust" denotes a summation over both the forward and backward station- 

ary paths and ASst = Sst(qi,qt;t) - Sst(q2,qt;t). In principle, time correlation functions 

can be evaluated based on Eq. (2.13), but such a calculation would be fully vulnerable to the 

caustic and root search problems described previously. Therefore, the above expression is 

primarily of formal interest. (It is useful, for example, when one considers the classical limit, 

cf. Appendix A.) A much more useful approach is based on the initial-value formulation of 

semiclassical dynamics and this will now be discussed. 



B. Initial-Value Formulation 

1. Propagator 

The initial-value representation of the semiclassical propagator is a recasting of the semi- 

classical boundary-value problem in terms of the initial position and an integral over the 

initial momentum. Since this approach is formally equivalent to the Van Vleck form, their 

evaluation is formally equal. However, the initial-value representation is numerically supe- 

rior since the stationary phase trajectories in the initial-value approach are determined from 

initial momenta and coordinates. The troublesome boundary-value problem thus become an 

initial-value problem. Moreover, the Van Vleck determinant, which vanishes at the caustics, 

appears in the numerator, instead of the denominator, of the semiclassical expression. The 

initial-value representation is a global-time asymptotic semiclassical approximation which is 

reducible to the Van Vleck formula by a stationary phase integration. 

Recently, Campolieti and Brumer56 presented an in-depth study of the initial-value for- 

malism, with an emphasis on a derivation of the Maslov indices and canonical transfor- 

mations among alternative phase-space representations. Their analysis follows a simple 

procedure of concatenating short-time propagators by sequential stationary-phase integra- 

tions. In the following subsection, we re-derive the initial-value propagator from a discretized 

perspective which leads to an efficient and transparent alternative for evaluating the Jacobi 

matrices. These new developments allow us to formulate an initial-value semiclassical al- 

gorithm for the quantum propagator in both the adiabatic and nonadiabatic limits. The 

central result of these efforts in both cases is an initial-value expression for the coordinate 

representation of the propagator, i.e.,56 

Gisc(qi,qt]t) = -^ jdPl |detJp(t)|
1/2exp[2a(qi,Pl, qt; t)/h - inp(t)/2]    , (2.14) 

where the phase is a canonical transformation of the classical action S, i.e., 

a(qi,Pi,qt;t) = Sst[q1} q(t); t] + p(t) • [% - q(i)]    , (2-15) 

10 



and the index fi(t) is related to the Maslov index by 

lM(t) = v(t) + Siga[3Z(t)Jq(t)]    • (2.16) 

Here, the Jacobi matrices 3p(t) and 3q{t) are solved from Eq. (2.7) or by the discrete approach 

derived in the next subsection. The stationary-phase condition determines the classical 

trajectory from the usual initial conditions (qi,Pi), namely, 

q(*) = q(qi>Pi;i) 

p(*) = p(qi,Pi;t) (2-17) 

which is an initial-value problem rather than a boundary-value problem as in Eq. (2.3). Also 

one sees from Eq. (2.14) that a vanishing determinant, det 3p{t), does not lead to a divergent 

prefactor at the caustics. 

Before proceeding to the next subsection, we note that some care is in order when eval- 

uating the initial-value propagator explicitly. Unlike the nonuniform asymptotic expression 

in Eq. (2.4), the initial-value expression Eq. (2.14) is nonsymmetric with respect to the 

exchange of the coordinates qi and q2, thus contradicting the symmetry of the Green's 

function for a real time-independent Hamiltonian. To remedy this, one can construct a 

symmetrized propagator by inserting a complete coordinate basis set at the half-time, i.e., 

G(qi,q2;t) = /rfq3(q2|e-^
/2?l|q3)(q3|e-^/2?l|q1) 

= /dq3G(q2)q3;t/2)G(qi)q3;t/2)     , (2.18) 

where the symmetry property of the Green's function for time-independent Hamiltonians 

has been used. In- the evaluation of time correlation functions, this symmetrization is not 

necessary. 

2. A New Derivation of the Propagator 

The approach reviewed in the previous subsection involves solving the Jacobi matrices 

from the Jacobi equation which, in the case of nonadiabatic dynamics described in Sec. Ill 

11 



below, becomes a complex integro-differential equation. To avoid this difficulty, we set out 

to find an alternative to evaluate the Jacobi matrices and have thereby found it necessary 

to derive the initial-value expression from a new perspective. Straightforward and self- 

contained, this derivation leads to a discretized expression for the Jacobi matrices and a 

simple interpretation of the Maslov-like index. These general expressions are applicable to 

both adiabatic and nonadiabatic dynamics, and are therefore in some sense more general 

than the original expressions. 

To start, the real-time propagator is rewritten as 

G(qo,qt;i) = <qt|e-^
/7i|qo> = / dp^MiPtl^^ho) (2-19) 

where a complete set of momentum state has been inserted. It is then essential to evaluate 

the position-momentum propagator from the initial coordinate q0 to the final momentum 

pt, which differs from the usual position-position propagator G(q0, q*; t) only in the terminal 

state. The position-momentum propagator in the discretized path integral form is given as 

1      p   /   m   \N/'2  r 

%■=. 1 

where (j)P is a discretized canonical transformation of the action, given by 

p 

i=l 
(q»-qi-i) -m- (q» - qi-i) -e 

i-l, 

Here, P is the discretization number, e is the discrete time increment e = t/P, and m is, as 

before, the diagonal particle mass matrix. 

The semiclassical approximation is the functional application of the stationary-phase 

approximation. The stationary phase condition [d<f>/dqi\st = 0 in the present case determines 

the discretized stationary path for i ^ P as 

(qi+i + qi_i - 2qt) m 
e2 

+ W, = 0 (2-22) 

and, for i = P, as 

P = --(qp-qp-i)-^WP    • (2-23) 
e 2 

12 



It is easy to recognize that in the continuous limit Eq. (2.22) is equivalent to the classical 

equation of motion, that is 

m-q(t') + VV[q(t')}=0 (2.24) 

and Eq. (2.23) imposes the terminal boundary condition 

pt = p(t) = p(qo,Po,t)    ■ (2-25) 

Next, the quantum fluctuations are evaluated by a second-order functional derivative, 

giving 

^L = ^(2Sili-SiJ+l-SiJ.1)-öijeKiJ    , (2-26) 
OQidqj       e 

except for i = j = P, which is given by 

^        m      eKP,p    , (2.27) 
dqpdqp       e      2 

where K is the time-dependent force constant matrix KtJ- = d^/dq.dqj evaluated along 

the stationary path. 

The determinant of the matrix [d2(f)/dqldqj} in the large P limit can now be defined as 

detDp(t) = lim detP em'1^-^- (2-28) 

where detP refers to the discretization of time into P slices but not to the system dimen- 

sionality N. This determinant is the product of the eigenvalues and hence the phase /z(<) of 

Bp(t) is determined by the number of negative eigenvalues of the matrix, i.e., 

detDp(t) = |detDp(t)| exp[27T/x(t)]. (2-29) 

Thereby, the semiclassical limit of the propagator in Eq. (2.20) can be explicitly written as 

(Pt\e~lflt/h\q0)sc =  1   l exp[tMt)ß - w(t)/2] (2.30) 
hNyJ\detDp(t)\ 

where 0st(t) = 5st[qi, q(t); t]-p(t)-q{t). Thus, the propagator in Eq. (2.19) can be rewritten 

as 

13 



GW(qo, q*;f) = -^ j dPo|detJP |detDp(t)| 

exp{i[^t(t) + p(t)-qt]/Ä-z7rM<)/2}   ,       ,(2.31) 

where a change of variable from the final to the initial momentum has been carried out 

which introduces the Jacobi factor Jp(t). It is proven in Appendix B that Dp(i) is equal to 

the Jacobi matrix, i.e., 

Dp(t) = Jp(t)    • (2-32) 

This result allows us to reach the final expression of the initial-value representation given in 

Eq. (2.14) with px in that expression replaced by p0- 

3. Time Correlation Functions 

By substituting Eq. (2.14) into Eq. (2.11), it is straightforward to obtain an initial-value 

semiclassical expression for general time correlation functions, i.e., 

(Ä{t)B(0))ISc = ^ j^ J dqij dq2 j dqt J d^ j dc^t j dPl J dp2 p(qi,q2] ß) 

X g(^Pi,c{t;t)g*(q2,P2,qt;t)(qt\Ä\4)(^\B\q1)   ,       (2.33) 

where g is the integrand in the initial-value propagator in Eq. (2.14), i.e., 

5(qi)pi,qt;t) = |detJp(t)|
1/2exp[ia(qi)pi,qt;t)//i-i7rM<)/2]. (2-34) 

In this case, A and B are general operators which can depend on both position and momen- 

tum. If one knows the position matrix elements of these operators, and if they are "simple" 

products of position and momentum, then one can readily express the above correlation 

function in a more explicit form. For example, if A and B depend only on the position 

operator, then Eq. (2.33) simplifies to read 

(A(t)B(0))ISc =zh™J dqiIdq21dqt Idpi IdP2 P(qi' q2' ® 
X g{qhpi,qt]t)g%q2,P2,Cit;t)A{qt)B{q1)   . (2.35) 
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In many cases of interest, however, the operators A and B are complicated functions of 

positions and momenta. In such cases, it is better to concentrate one's efforts on the time 

correlation function written in the form 

(A(t)B(0)) = ^ I dq0 I dq, J dq2p(qo,q2;ß)(^2\Ä(t)\q1)(q1\B(0)\q0)   , (2.36) 

where A{t) and B(0) are Heisenberg operators. The focus therefore shifts to deriving a 

semiclassical initial-value expression for the matrix element (q2|i(i)|qi). Through the Weyl 

correspondence, an operator can be expressed as62, 

(^\Ä(q,p)K) = ± I dp' AW u + q'2)A p'l j»'«-™*  , (2-37) 

where Aw(q,p) is the classical symbol corresponding to the quantum operator i(q,p). By 

combining Eq. (2.37) and the initial-value expression in Eq. (2.14), one obtains 

(q2|e^i(q, p)e-^t/?i|q1)/5C = ^ / dq'i / d<& j dp'Aw {(q\ + q2)/2, p'] 

x e^-«-q'2)/^q;|e-^/?i|q1)/5c(q/
2|e-

I^|q2);5C   ,   (2-38) 

We then make a change of variables to q = (q^ - q2) and qt = (q[ + q'2)/2, integrate over 

the first variable resulting in a delta function of momentum which is also integrated over, 

and finally arrive at the initial-value semiclassical representation of the Heisenberg operator, 

i.e., 

(q2|e
i^i(q,p)e-^t/a|q1)/5C = ~ J dqt J dPlf dp2Aw (qt, [Pl(t) + p2(*)]/2) 

x 5(qi,pi,qt;*)5(q2,P2,qt;*)*   ,   (2-39) 

where the classical momentum in the symbol Aw(q,p) takes the average value at the end 

of the trajectories which are used in the computation of #(qi, Pi, q*; *) and ^(q2, p2, qt; t)*. 

Thus, momentum symbols in the Weyl ordering of Heisenberg operators are essentially the 

symmetrized final momentum variables from the initial-value semiclassical representation. 

It can be shown that Eq. (2.37) is recovered from the t -* 0+ of Eq. (2.39). With this 

formulation of semiclassical Heisenberg operators in hand, the time correlation function in 

Eq. (2.36) can be written in the initial-value representation as 
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(Ä{t)B(0))ISc= ^J^NJ^J 
dqi i dq2 / dqt i dpi Idp2 P(q°'q2'ß) 

x Aw(qt)[pi(t) + p2(t)]/2)(qi|ß(o)|qo)5(qi.Pi,qt;*)^(q2,P2,qi;t),   (2.40) 

where the zero-time matrix element <qi|£(0)|qo) has been left in a general form. 

The form of Eq. (2.40) also suggests a series of approximations in which64 

^(q)p) = ^o(q)P) + Ei§:^(q.P)     ■ (2-41) ,   n n=l 

where A0(q,p) = ^d(q,p) is the classical function of the dynamical variables q and p. 

In particular, if /W(q,p) is a polynomial such a truncation will be exact for sufficiently 

large, but finite, values of n. In general, such a truncation is not strictly equivalent to the 

semiclassical approximation because the error is in the pre-exponential part. Nonetheless, 

the truncation is tantamount to that used by Wigner65 in his formulation of the leading 

quantum correction to the classical partition function. 

III. SEMICLASSICAL THEORY: NONADIABATIC DYNAMICS 

Many advances have taken place in the field of nonadiabatic dynamics simulation.66 71 

The theoretical basis for several algorithms is the Pechukas theory of nonadiabatic colli- 

sions based on the stationary phase approximation to Feynman path integrals.53'54 As far 

as the nuclear motion is concerned, classical dynamics has been assumed in most of the 

nonadiabatic dynamics algorithms based on the Pechukas' formulation. Clearly, neglect of 

the quantum nature of the nuclear dynamics is inadequate for treating light nuclei such as 

protons. Therefore, the combination of the initial-value semiclassical approximation and 

nonadiabatic dynamics will represent a more accurate description of such systems and this 

is the focus of the present section. 

Consider the dynamics of nuclei on a potential resulting from multiple electronic diabatic 

surfaces. One then needs to extend adiabatic dynamics to nonadiabatic dynamics to allow 

for the possibility of transitions between the different surfaces. To put the formalism in the 
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most general context, we consider the Hamiltonian of a many-body, multi-level system is 

written as 

H  =   H0(q) + Hd(q)    , (3,1) 

where q, as before, is the collection of N nuclear degrees of freedom of the system of interest, 

and H0 = q(t') • m • q(0/2 is the kinetic energy term for the nuclei. The Hamiltonian Hd 

can be explicitly expressed in terms of the elements hü (for the ith diabatic surface) and h%j 

(for the coupling between the ith and jth diabatic surfaces), i.e., 

HM = E^+EE^ • (3-2) 
i i    j>i 

Here, the elements are defined as 

hi  =   |i)Ki(q)(i|    , (3-3) 

and 

ha = |i)^-(q)0"l + b'>K}(q)(*l   » (3-4) 

where the off-diagonal coupling elements satisfy the Hermitian relation V^ = V£. The 

potential energy terms Vit in the elements hü describe the diabatic surfaces, so the above 

formulation of the problem is completely general. 

For the Hamiltonian in Eq. (3.1), the matrix element of the nuclear time propagator in 

the diabatic basis reads 

G,Mo,qt;t) = Jvq(t')exV{iS0[q(t')}/h}T,u[q(t')} (3.5) 

where S0[q{t')} is the action functional associated with the kinetic energy term H0 and TM„ 

is the overlap between the initial and final diabatic states. Explicitly, the time evolution 

operator for the diabatic Hamiltonian evolves according to the time-dependent Schrödinger 

equation 

ih d-^p-  = Hd[q(t')W) (3-6) 
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with the initial condition u(0) = 1. The transition amplitudes are thus given by 

T^[q(f)]  =  (nMt)W) , (3J) 

which is a functional of the nuclear path q(t')- 

To facilitate the subsequent analysis, the quantum average over the diabatic basis is 

introduced as 

„vu  _ (Mt^Rt'Ht'Mu) (38) 
{I[t))d ~      (ij,\u(t,t')u(t',0)\u) 

where the denominator is independent of the variable t', and /(*') is in general an operator. 

This quantum average is carried out by assuming a particular nuclear path q(i') and is thus 

a functional of the nuclear paths. Equations (3.1)-(3.8) represent the exact formulation of 

the nonadiabatic quantum dynamics for a given nuclear path q(t'). 

Following Pechukas' analysis, we apply the stationary phase approximation to Eq. (3.5) 

and thus obtain the equation of motion for the nuclear coordinates53,54 

m , /^[q(t01\ (3.9) 

which is to be solved together with Eqs. (3.6)-(3.8) to obtain the nonadiabatic stationary 

solution(s). Clearly, the coupling between the diabatic state propagation and the station- 

ary trajectory imposes the self-consistency condition for the solution of the nonadiabatic 

trajectories. 

With the stationary solutions in hand, the semiclassical expression for the propagation 

is given as 

(M)qt|e-
I^k)qi)/5C = ^/^P1|detJp(t)|1/2exp(^W//i-z7r^)/2) (3-10) 

which is the same as the adiabatic semiclassical expression in Eq. (2.14) except that the 5. 

is now defined as 

SliV,st(<iutlf,t) = So,sMi^f,t)-ih\nT^[qst(t)]. (3-11) 
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so that <f>st{t) = Sßu,st - P(t) • q(i) and a(t) = S,u,5t + p(t) • [q* - q(t)]. The prefactor 

Jp(t) obeys the Jacobi equation which can be obtained from taking the partial derivative of 

Eq. (3.9) with respect to the initial values p0 or q0, giving the Jacobi matrix equation 

m-3q(t') + (V-V'Hd)dJq(t') 

"'dt"{((VHd)u(t',t")(V"Hd)}d - (VHd)d ■ <V".ffd)d]J„(i")  = 0 ,     (3.12) 
h Jo 

where V = d/dq(t'), V" = d/dq(t"), and m • 3q = Jp. The latter equations are the 

nonadiabatic analog to the adiabatic Jacobi equations of Eqs. (B6)-(B7) [cf. Appendix B]. 

Solving the integral-differential equation in Eq. (3.12) is a formidable task. In addition, 

the fact that the Jacobi matrices are generally complex introduces ambiguities in defining 

the Maslov index fi(t). To circumvent these difficulties, we resort to a discretized expression 

for the Jacobi matrix which is equivalent to solving the Jacobi equation. To be more explicit, 

the Jacobi determinant, detJp(£), can be evaluated in a discretized format as in the previous 

section, giving in the nonadiabatic case 

d24>st m,oj:        . .      , ,   /d2Hd[g{t')}\ h2C /313^ 

except for i = j = P, which is given by 

J%^  =   m_£/^[q(Q]\    +lhtCpp    . (3.14) 
dqpdqp t        2\       dq\       jd 2       ' 

The quantum fluctuation correlation matrix dj here is given by 

r /dHd[q(t')} dHd[q(t<)}\    _  (dHd[q(t')]\    / dHd[q(t>)}\ 

The dimensionality implicit in the above equations is such that d2(/>st/dqidqj is a matrix of 

dimension N x P. After taking the limit P -»• oo, we obtain the explicit expression for the 

prefactor 

d2d> 
detJp(£) = lim det txnl1--^-. (3-16) 

Here, the determinant denotes the product of eigenvalues which are complex and defined 

counter-clockwise in the complex plane.  Therefore, the Maslov-like index p,(t) equals the 
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summation of the phase angles of the complex eigenvalues of the discretized second-order 

derivative matrix in Eqs. (3.13) and (3.14) in the large P limit. The above derivation 

represents a different approach for calculating the Jacobi matrices and the Maslov-like index 

without solving the Jacobi equations. It is applicable in both the adiabatic and nonadiabatic 

limits. 

IV. NUMERICAL ALGORITHMS 

Though the initial-value semiclassical expression in Eq. (2.14) represents a significant 

simplification of the exact path integral, the integrand g of Eq. (2.34) as a function of the 

initial momenta is oscillatory and thus does not render itself to simple integration schemes. 

Since the usual Monte Carlo method is not applicable to integrate such complex expo- 

nents, one has to introduce a positive definite weight function such that the integration 

domains which dominate the integral will be sampled preferentially over those which barely 

contribute because of phase cancellations. Indeed, such an approach, termed stationary 

phase Monte Carlo, has been proposed and applied in some quantum dynamical path inte- 

gral simulations.14"16,19 Here, we will describe a simplified version of the stationary phase 

method as it applies to the present semiclassical formalism. 

In general, consider a one-dimensional integral of the form 

1(h) = I" dx e^x)ln    , (4-1) 
J —oo 

which is a generic integral having a complex exponent. If h is small, the integral is dominated 

by regions where the phase <j>(x) is stationary, i.e., where <j/(x) = 0. In the non-stationary 

regions, the complex exponential is highly oscillatory, thus effectively canceling the contribu- 

tion from those regions. Therefore, it is advantageous to introduce a weight function which 

suppresses the oscillatory integrand and thus acts effectively as a filter. A simple example 

is a Gaussian filter, defined as 

We(x) = exp{-t[<l>'(x)]2}     , (4-2) 
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where e is the filter parameter. Then, the integration in Eq. (4.1) becomes 

/CO 

dx el<Kx)/hWe{x)    , (4.3) 
-oo 

and, for example, an expectation value is approximated as 

A general form of filters and the relationship between the filtered integral in Eq. (4.3) and the 

exact one in Eq. (4.1) have been analyzed in detail by others.14"16'19 It should be noted that 

there is some flexibility in the definition of the pre-exponential factor of the filter function 

depending on the final numerical target, but these factors will cancel in the calculation of 

expectation values or time correlation functions as outlined below. 

Although approximations to the exact integrals, Eqs. (4.3) and (4.4) converge much 

faster than the original integrals. If the parameter e is small, the filtered integral is closer 

to the exact one but takes much longer to converge; in the case of e -> 0, the exact integral 

is recovered. If the parameter e is large, the filtered integral is localized near stationary 

points and thus ignores fluctuations away from those points. A proper choice of the filter 

parameter is indeed crucial for carrying out an accurate and efficient calculation. Given a 

required level of convergence, the filtered integral exhibits poor statistics for e < emin, but 

it may deviates substantially from the exact value for e > tmax. Thus, the optimal choice of 

e is located in the intermediate region, emin < e < e™*, where the filtered integral becomes 

both stable and accurate. 

Following the above discussion of the stationary-phase filter method, it is now specialized 

to treat the integrations in the initial-value representation of semiclassical time correlation 

functions explicit in Eq. (2.33). Since the general term a(qi, Pi, qt; t) defined by Eq. (2.15) 

is the phase, the filtered propagator is given by 

(q2\e-iflt/h\qi)isc = I J dPlg(qi,Px,q2;t)W€(Pl)    , (4.5) 

where the filter can be defined as 

21 



WttP1 = exp [- ep(da/dPl)
2} = exp (- ep{Jp(t)[qt - g(t)]}2) (4-6) 

and a one-dimensional notation has been adopted here for notational simplicity. It is also 

straightforward to write down the filtered expression for the semiclassical time correlation 

function. For example, the case of position-dependent operators is given from Eq. (2.35) by 

(Ä(t)B(0))ISc = 
/ dqx J dq2 I dqt J dPl J dp2 p(gi, g2; ß) Kg{t)We,PlWe!P2W€>qtA(qt)B{qi) ^       (4J) 

/ dqi J dq2 J dqt J dpi J dp2 p{qi,q2] ß) Kg{t)W€>PlW€iViWt,qt 

where Kg(t) = g(qi,Pi,qt; t)*g(q2,P2, Qt\ t), and a filter is also applied here to the qt Integra- 

tion, i.e, 

W£,qt = exp {- eg[ö(ai - a2)/dqt}
2} = exp {- eq\pi(t) - p2(t)}2}     ■ (4-8) 

In Eq. (4.7), the quantum density matrix element p{qi,q2]ß) also provides a natural "filter" 

for the integration over the variables qx and q2. The functions A(qt) and B{qi) in Eq. (4.7) 

may also aid in the filtering, depending on their form. Note that the denominator of Eq. 

(4.7) equals the partition function Z, but it has been written so that the overall equation is 

amenable to a Monte Carlo algorithm. It should also noted that the trajectories q(t) in Eq. 

(4.6) which contribute to Wc,Pl and We>P2 in Eq. (4.7) are different (i.e., they have different 

initial momenta) and therefore must be treated as such. 

V. NUMERICAL EXAMPLES 

A. Propagator for a Solvable Potential 

To demonstrate the feasibility and accuracy of the initial-value semiclassical approxi- 

mation and the stationary-phase filter technique, we first present a numerical study of a 

solvable potential, given by 
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with m = 1.0 and ft = 1.0. The real-time propagator of this potential is given in a closed 

form by6 

G(quQf, t) = (mjmtliht) exp [im{q\ + q?)/2ht] h^mqxqt/iht)    , (5.2) 

where Iv is the modified Bessel function of index v = 3/2. In Fig. 1 is plotted the unfiltered 

integrand g of Eq. (2.34), the filtered integrand in Eq. (4.5), and the filter in Eq. (4.6) as a 

function of the initial momentum for qx = 3, qt = 4, t = 3. The filter parameter in Eq. (4.6) 

was taken as ep = 0.01. It can be seen clearly from the figure that the integrand is highly 

oscillatory except near the origin. The filter selects two stationary regions, one to the left 

of the origin, the other to the right of the origin, which indeed correspond to two possible 

classical trajectories, the direct path and the indirect path bounced from the repulsive wall. 

The squared amplitude of the time propagator for the potential in Eq. (5.1) with the 

same parameters as in Fig. 1 is plotted as a function of time in Fig. 2, where the exact and 

semiclassical results are represented by a solid and dashed lines, respectively. The initial 

momentum was integrated on a 200-point grid from -10 to 10 with a filter parameter of ep = 

0.01. Despite the small discrepancies due to the nature of the semiclassical approximation, 

good agreement with the exact result is achieved. 

B. Anharmonic Quantum Oscillator: Position Correlation Function 

In this subsection, the initial-value semiclassical method is used to compute the position 

correlation function for an anharmonic potential, defined as 

V(q) = \q2 + -/ (5-3) 

th m = 1.0, h = 1.0 and ß = 1.0. The position correlation function was computed with 

filters on the momentum integrations having a value of ep = 0.1. The thermal density matrix 

was calculated by the numerical multiplication method (NMM),12 and the coordinates and 

momenta were integrated on grids. The numerically exact correlation function was obtained 

wi 
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from a harmonic oscillator basis set calculation. In Fig. 3, the real parts of the exact and 

semiclassical time correlation functions are plotted as functions of time. The semiclassical 

approximation is more accurate for time correlation functions than for propagators, probably 

because correlation functions result from a thermal average of forward and backward real- 

time propagators and are thereby less sensitive to errors introduced by the semiclassical 

approximation. In general, the agreement between the exact and semiclassical results is 

excellent for this system. 

C. Double Well: Reactive Flux 

As a final example, the flux-flux correlation function was calculated for a double well 

potential, defined as 

V(q) = -\q
2 + \q4 (5-4) 

with TO = 1.0, ß = 1.0 and k = 1.0. The quantum dynamics of a double well exhibits 

coherence at low temperature, thermal activation at high temperature, and assumes an 

exponential decay in the presence of dissipation. Miller and co-workers have shown that 

thermal rate constants can be obtained from the time integration of the flux-flux correlation 

function, defined as72 

CFF(t) = Tr (pe-ßxn-^Pe-ßHl2+mtlh)     , (5-5) 

where the flux operator is given by 

F = —\p5(q-qb) + 6(q-qb)p] (5.6) 
2m 

with qb defined as the position of the dividing surface.   To be more explicit, we define a 

complex time propagator as 

G(gi,q2;ß,t) = (q2\e^-^h\qi) (5-7) 

such that the flux-flux correlation function can be expressed as72 
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CFF(t) = - lim -L \\pG(qb,q;ß,t)\2 + ReppbG(qb,q;ß,t)G*(qb,q;ß,t)} (5.8) 
<7-»<7b 2m2 L 

where pb is the momentum operator acting on qb. Although the flux-flux correlation function 

depends upon the choice of the dividing surface, the rate constant is a physical quantity 

independent of qb.   For convenience, we choose qb = 0 so that the first term in Eq. (5.8) 

vanishes for a symmetric barrier. In Fig. 4, the semi classical value of CFF{t) is plotted for 

the double well and compared with the exact result obtained from a basis set calculation. 

Again, excellent agreement is obtained. 

VI. CONCLUDING REMARKS 

In this paper, we have discussed the semiclassical formulation of quantum dynamical 

time correlation functions and have also investigated the numerical feasibility of the semi- 

classical approximation for calculating such functions. We demonstrated the reduction from 

the exact quantum time correlation function to a nonuniform boundary-value semiclassical 

expression, then to a global-time initial-value semiclassical representation, and finally to the 

limit of electronically nonadiabatic quantum nuclear dynamics. Much of this formulation 

was accomplished with the help of a discrete approach. The resulting discrete initial-value 

representation of the semiclassical approximation proves to be advantageous for the im- 

plementation of semiclassical dynamics since the global-time formula avoids the problems 

associated with caustics and root searches. 

The studies presented in this paper are not only instructive and revealing, but they 

also serve as the formal basis for numerical algorithms. To achieve numerical efficiency 

in such algorithms, a stationary-phase filter technique was introduced into the method to 

effectively suppress the oscillatory region of the integrations. Several examples were tested 

with the semiclassical method and compared with the exact results obtained from basis- 

set calculations. These studies clearly demonstrated the feasibility and accuracy of the 

algorithm. 
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With the results of the present work in hand, non-trivial applications of the semiclassical 

theory should be within reach. For example, the combined use of the initial-value semiclas- 

sical formalism and the stationary phase Monte Carlo technique should allow us to calculate 

time correlation functions for realistic many-body systems, particularly for one (or a few) 

quantum particles in a classical-like environment. It will also be very interesting to apply 

this algorithm when the semiclassical nuclear dynamics of such systems must be treated 

nonadiabatically. For more complex quantum systems in the condensed phase, the semiclas- 

sical method can also be used to accurately propagate an "important" quantum subsystem 

(e.g., solute) under the influence of an approximate quantum environmental force calculated 

by CMD38~41 or from a quantum Gaussian bath. We have, in fact, developed a simple and 

flexible scheme73 to generate the quantum forces in the latter scenario which can readily be 

incorporated into the semiclassical methodology described in this paper. These and other 

developments should greatly facilitate our ongoing efforts to numerically simulate a wide 

range of complex quantum dynamical processes in condensed matter. 
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APPENDIX A: THE CLASSICAL LIMIT OF QUANTUM TIME CORRELATION 

FUNCTIONS 

To reveal the relationship between classical and quantum time correlation functions, one 

can introduce into Eq. (2.13) a set of collective coordinates74 

q(0 = q/(<0 - q»(*0 

q(t/) = [q/(0 + q6(0]/2 (A1) 

with corresponding collective momenta 

p(t') = Pf(t')-Mt') 

P(t') = [pf(t
l)+pb(t')}/2    , (A2) 

where q/(£') and qb(f) are the forward and backward classical paths, respectively, and p/(t') 

and p6(t') are the corresponding momenta. Note that in the context of the time correlation 

function given by Eq. (2.13) the initial collective coordinates are given by q(0) = (qi + q2)/2 

and q(0) = qi - q2 and the final collective coordinates are given by q(£) = qt and q(i) = 0. 

Assuming that the path difference q(i') is small, one can expand the action difference ASst 

in Eq. (2.13) to linear order in q such that 

ASst = Sst{qi,qt;t) - Sst(q2,qt;t) ~ -po ■ qo (A3) 

where p0 = p5i(0) and q0 = qst(0). Furthermore, the difference of the forward and backward 

stationary paths can be ignored in the non-exponential factor of Eq. (2.13) and a Jacobian 

transformation can be performed, giving 

I dqt \detdqtfdPor1 = j dp0 (A4) 

which changes the semiclassical boundary-value problem to an initial-value problem. Putting 

all the pieces together and omitting the irrelevant indices, we have 

(A(t)B(0))w = ^Jdqfdp W(q, p; ß)A[qd(t)]B[qd(0)}     , (A5) 
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where qd(t) is the classical trajectory and W{q,p) is the well-known Wigner distribution 

function, defined as65 

W(q,p;ß) = ^jdqe-^/hp(q + q/2,q-~q/2-ß)    . (A6) 

Assuming the high-temperature approximation of the canonical density matrix, i.e., 

the Wigner distribution function (A6) reduces to the Boltzmann distribution function. The 

classical time correlation function is then completely recovered, giving 

(A(t)B(0))d = ~ ^v / d*jd? zM-ßHd{v,q)] A[qd(t)]B[qd(0)} (A8) 

with H(p, q) and Zd being the classical Hamiltonian and partition function, respectively. 

Thus, classical dynamics results from the high temperature approximation of the density 

matrix and the linear expansion of the action difference of the forward and backward sta- 

tionary paths in the semiclassical expression for the time correlation function. The reduction 

to the classical limit starting from the initial-value approximation does not differ from the 

above derivation. The Weyl ordering of operators simplifies the analysis, though the classical 

limit does not depend on operator orderings. 

Clearly, Eq. (A5) implies that a quasiclassical dynamics can be constructed based on 

the Wigner distribution function. On the other hand, the fact that the Wigner distribution 

function is not positive-definite complicates the interpretation of the Wigner distribution as 

a phase-space quantum distribution function. However, one might adopt a coarse-grained 

Wigner distribution, such as the Husimi distribution function,75 as a quantum analogy to 

the classical Boltzmann distribution function. 
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APPENDIX B: DISCRETE DERIVATION OF THE JACOBI EQUATION 

For convenience, the derivation in this appendix is presented for one degree-of-freedom 

as the multidimensional generalization presents no special difficulties. To start, we define 

the determinant of the following two matrices as 

/ 

Dq(P) = det 

2-t2Wx       -1 0 

-1       2-t2W2 -1 

-1       2-e2^ 

\ 

P-2 ■1 

V -1 2 - Z
2
WP-I 0 -1 z-rwp-i / 

which appears in the discrete expression for the position-position propagator, and 

DP(P) = det 

2-e2W1       -1 

-1       2-t2W2 

0 
\ 

V 

-1       2-t2Wp-i 

0 -1 \-\t2Wp 

(Bl) 

(B2) 

which appears in the position-momentum propagator. Note that the determinant here is 

the product of the eigenvalues and thereby does not imply the absolute value. It is then 

easy to observe the following iterative relations 

Dq(P + 1) = (2 - e2WP)Dq(P) - Dq(P - 1) (B3) 

and 

Dp(P) = [l - (e2/2)Wp\ Dq(P) - Dq(P - 1) 

Combining Eqs. (B3) and (B4), we have 

Dp{P) = \[Dq{P + l)-Dq{P-l)\    . 

(B4) 

(B5) 
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To associate the above difference equation to differential equations, we take the limit e - 0, 

define the continuous variable t = eP, and introduce continuous variables Jq(t) = eDq(P)/m 

and J (t) = DP(P). With these definitions in hand, we can rewrite Eqs. (B3) and (B5) as 

jq + W(t)Jq = 0 (B6) 

and 

mjq = JP (B7) 

with the boundary conditions specified as Jg(0) = 0 and Jp(0) = 1. Obviously, Eqs. (B6) and 

(B7) are identical to the Jacobi equations if W(t) is specified as mW(t) = d2V[qst{t)]/dq2] 

therefore, Jq and Jp are the usual Jacobi variables, i.e., Jq{t) = dq{t)/dPl and Jp{t) = 

dp(t)/dPl. 
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FIGURES 

FIG. 1.  The unfiltered integrand g in the initial-value semiclassical approximation (dashed 

line), the filtered integrand in Eq. (4.5) (solid line), and the filter function (bold line) plotted as 

functions of the initial momentum for the 1/q2 potential with qi = 3, q2 = 4, and t = 3. 

FIG. 2. A plot of |G/SC(3,4;t)|2 versus time (dashed line) for the 1/q2 potential. The exact 

result is shown for comparison by the solid line. 

FIG. 3. The real part of the initial-value semiclassical position correlation function (solid di- 

amonds) for the potential in Eq. (5.3) at a temperature ß = 1.0. The numerically exact result 

obtained from a basis set calculation is shown by the solid line. 

FIG. 4. The initial-value semiclassical flux-flux correlation function (solid diamonds) for the 

potential in Eq. (5.4) plotted along with the numerically exact result (solid line) obtained from a 

basis set calculation 
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